Схема arduino atmega328

Схема arduino atmega328
Схема arduino atmega328
Схема arduino atmega328
Схема arduino atmega328

При настройке антенно-фидерных систем важно правильно измерить коэффициент стоячей волны (КСВ). Этот параметр в любительских условиях обычно измеряется с помощью КСВ-метра на фиксированной частоте, а частотная характеристика антенны строится рядом последовательных замеров. Для однодиапазонной антенны этот классический метод вполне применим.

Но чтобы настроить таким образом 7-и диапазонную КВ антенну, в которой изменение размеров одного конструктивного элемента влияет в разной степени на ее параметры на нескольких диапазонах, потребуется масса усилий и времени.

Тут необходим профессиональный антенный анализатор, который выведет на дисплей или экран ноутбука график значения КСВ, а также активного и реактивного сопротивления антенны в зависимости от частоты. Удобно и наглядно. Именно к такому выводу я пришел, когда смонтировал на дачном участке на крошечной, с трудом отвоеванной у жены площадке, всеволновую КВ антенну GAP TITAN DX.

Во всей остроте встал вопрос – покупать фирменный антенный анализатор или делать его своими руками. Учитывая, что этот прибор нужен не чаще раза в год, а на приобретение антенны уже была потрачена изрядная сумма денег, я склонился ко второму варианту.

Антенный анализатор должен быть по возможности простым, его настройка и калибровка должна быть доступна в домашних условиях без использования каких-либо образцовых приборов. Он должен обеспечивать панорамное измерение КСВ, X и R с выводом графиков на экран компьютера и (или) собственного дисплея в частотном диапазоне 1-30 МГц. Ну, и конечно, стоимость комплектующих должна быть существенно ниже стоимости самого дешевого серийно выпускаемого антенного анализатора. Противоречивые требования...

В качестве контроллера я решил использовать готовую отладочную плату Arduino Uno R3. И после длительных поисков и анализа существующих решений нашел хороший вариант антенного анализатора, который доступен для изготовления своими руками.

Впервые описание схемы, конструкции и принципа действия антенного анализатора, удовлетворяющего, на мой взгляд, всем перечисленным требованиям, было опубликовано в журнале «Funkamateur» №12 за 2004г. Авторы – Davide Tosatti (IW3HEV) и Alessandro Zanotti (IW3IJZ). Журнал «Радиохобби» в №1 за 2005г. опубликовал сокращенный перевод этой статьи. За прошедшее с той поры десятилетие идея не только не устарела, но и получила дальнейшие развитие.

Польский радиолюбитель Jarek (SP3SWJ) на своем сайте разместил массу информации по дальнейшему развитию идеи. Множество вариантов схем и конструкций от VNA MAX 1 до VNA MAX 6, масса ссылок. Частотный диапазон от 1-30 МГц до 1-500 МГц. К сожалению, сайт, на мой взгляд, совершенно «бестолковый». Очень сложно понять, какая прошивка и какая программа для какой схемы. Где первая версия, а где последняя и т.п. Полную информацию, необходимую для повторения, выловить очень не просто, а для некоторых схем ее просто нет.

Davide (IW3HEV) организовал серийное производство своего антенного анализатора под брендом miniVNA. Красивая коробочка позволяет проводить измерения в диапазоне от 100 КГц до 200 МГц, а с дополнительным блоком и до 1,5 ГГц. Все хорошо, но почти 400€ за это чудо техники для российского радиолюбителя дороговато... Схема и описание miniVNA опубликовано в журнале «A Radio. Praktica Elektronika» №10 за 2007 г.

Структурная схема антенного анализатора

После этого краткого экскурса в историю перейдем к делу. Структурная схема антенного анализатора VNA показана на рисунке.

Сигнал с генератора на основе DDS через направленный ответвитель подается в исследуемую антенну. Сигналы с датчика прямой и отраженной волны подаются на уникальную микросхему от Analog Devices – AD8302. На ее выходе формируются два аналоговых сигнала. Первый пропорционален отношению амплитуд входных сигналов, второй – разности их фаз.

По этим двум значениям можно рассчитать все характеристики антенны, в том числе КСВ тракта, активную и реактивную составляющие входного сопротивления антенны.

Комплектующие для этого антенного анализатора в общем-то достаточно редкие, но вполне доступные. Проблема в том, что найти все необходимые компоненты у одного продавца невозможно. А если приобретать в разных российских интернет магазинах, транспортные расходы становятся слишком большими. К счастью, есть Aliexpress и eBay. В общем, без помощи братского китайского народа я бы ничего не смог сделать.

Как я уже писал, основное требование к этой конструкции – простота изготовления и минимальная стоимость. При сохранении необходимых метрологических характеристик, разумеется. Поэтому я использовал в конструкции два готовых модуля. Первый – это модуль синтезатора на основе DDS AD9851. На небольшой плате смонтирована микросхема синтезатора, тактовый генератор и вся необходимая обвязка. И стОит этот модуль в Китае дешевле одной микросхемы DDS в России.

Второй модуль – «Arduino Uno». Это популярная отладочная плата на основе микроконтроллера ATmega328. Она включает в себя микроконтроллер, всю необходимую обвязку и конвертер USB-COM для связи с компьютером. И опять же его стоимость в Китае соизмерима со стоимостью одного микроконтроллера в России…

А вот измерительный модуль пришлось собирать самостоятельно. Его схема показана на рисунке. Сигнал с модуля DDS подается на монолитный усилитель DA1 типа GALI производства Mini-Circuits.

Важнейшая часть измерительного модуля – направленный ответвитель T1. От его качества зависит точность и частотный диапазон анализатора. Это так называемый «Tandem Match» – трансформатор на двухдырочном бинокле. Подробно методика изготовления «Tandem match» описана в статье в упоминавшемся выше журнале Funkamateur и в pdf файле, ссылка на который в конце этой странички.

К разъему X1 подключается антенна. В показанном на схеме отключенном состоянии реле K1 сигналы прямой и отраженной волны с направленного ответвителя через аттенюаторы 10 db на резисторах R9, R10, R15 и R11, R12, R16 подаются на входы DA3 AD8302. Аттенюаторы нужны для исключения перегрузки AD8302.

Этот антенный анализатор можно использовать и для исследования амплитудно-частотных характеристик электрических цепей. При включенном состоянии реле K1 сигнал с разъема X1 может быть подан на исследуемую цепь, сигнал с выхода этой цепи подается на разъем X2. Таким образом можно настроить полосовой фильтр, снять характеристику кварца и т.п.

Аналоговые сигналы, пропорциональные отношению амплитуд и разности фаз прямой и отраженной волны с выхода DA3 подаются на АЦП микроконтроллера ATmega328 в модуле Arduino Uno. Учитывая, что ноутбук в наше время перестал быть роскошью, я решил на первом этапе отказаться от собственного индикатора в этом антенном анализаторе. Вся информация выводится на экран ноутбука, к которому анализатор подключается через интерфейс USB.

Дополнительного питания не требуется, хотя на плате и предусмотрен стабилизатор на 5 В. Это в расчете на будущую модернизацию для возможности работы в автономном режиме. Конечно, на крыше с ноутбуком не всегда удобно, но зато читать информацию с большого экрана гораздо комфортнее и нагляднее, чем с небольшого дисплея.

Подключение измерительного модуля к плате Arduino показано на рисунке Программу для ATmega328 я написал на Си в среде CodeVisionAVR v2.05.0. Совсем не обязательно программировать Arduino в ее фирменной среде. Это имеет смысл только для тех, кто впервые сталкивается с программированием.

Тем же, кто имеет представление о других языках программирования, нет никакой необходимости разбираться в синтаксисе и других тонкостях языка Arduino. Ведь это упрощенный до предела Си, в котором отсутствует встроенный отладчик, тщательно скрыты от пользователя все аппаратные модули внутренней периферии контроллера. А о возможности ассемблерных вставок даже и речи нет.

Есть, конечно и плюсы у Arduino. Основной, на мой взгляд, это возможность загрузки программы в контроллер без программатора, используя смонтированный на плате конвертер USB-COM. Как это сделать читайте в полном описании, ссылка в конце этой странички. Предварительно потребуется скачать последнюю версию программного обеспечения Arduino с официального сайта и установить из него драйвер конвертера USB-COM.

Для загрузки HEX файла в Arduino Uno потребуется также программа XLoader, архив с дистрибутивом которой нужно скачать с сайта ее автора. Локальная ссылка есть в конце странички. Работа с программой проста и интуитивно понятна, подробности в полном описании.

Несколько слов об использованных деталях. Все резисторы и неполярные конденсаторы SMD типоразмеров 1206 или 0805. Индуктивности L1 и L2 могут быть как SMD, так и обычные для монтажа в отверстия. Резисторы R4 и R6 калибровочные, необходимость их установки и номиналы определяются при наладке. Стабилизатор DA2 в данной версии не используется, т.к. анализатор питается от USB. Он установлен в расчете на будущую доработку конструкции.

Обратите внимание на установку джамперов на модуле DDS. Они должны быть установлены именно так, как показано на рисунке – замкнуты J1 и J3, остальные разомкнуты. Схему и описание модуля DDS также можно скачать по ссылке в конце странички.

Для наладки желательно иметь ВЧ вольтметр, а лучше осциллограф с полосой пропускания хотя бы несколько мегагерц и частотомер. В крайнем случае можно обойтись ВЧ пробником на диоде и мультиметром. Здесь я не буду подробно описывать наладку, желающие могут ознакомиться с ней в полном описании,

Антенный анализатор работает под управлением программы Ig_MiniVNA. Ее последнюю версию до недавнего времени можно было загрузить с сайта http://clbsite.free.fr/. К сожалению, в 2015 г. ссылка перестала работать. Так что загружайте с моего сайта. Ссылка ниже. Это последняя версия программы. Действительно последняя, т.к. по утверждению автора при крахе компьютера он потерял все... Но программа работает как на Windows XP, так и на Windows 7 64 бит.

Работа с программой проста и интуитивно понятна, детали смотрите в полном описании, а также на сайте SP3SWJ. Этот сайт, к сожалению, только на польском языке и в большом беспорядке...

Для примера привожу вид окна программы при исследовании моей антенны в диапазоне 40м. Наглядно видно, что резонанс сдвинут вниз по частоте. Надо настраивать.

Частотный диапазон анализатора определяется в первую очередь направленным ответвителем, материалом его сердечника, аккуратностью и симметричностью намотки. Верхняя граница частотного диапазона зависит от типа DDS. Теоретическое предельное значение – половина тактовой частоты DDS, в данном случае это 90 МГц. Реально удовлетворительные параметры обеспечиваются до частоты не более 1/4 тактовой, т.е до 45 МГц. Но больше 30 МГц для КВ антенны и не нужно.

Антенный анализатор может работать под управлением еще одной программы - vna/J, которую написал Dietmar Krause (DL2SBA). Ее можно скачать с его сайта. Программа написана на JAVA и может работать не только под Windows, но также под Linux и Mac.

Разумеется, предварительно нужно установить на компьютер JAVA. Интерфейс vna/J похож на IG_MiniVNA. Только после запуска программы из списка поддерживаемых устройств нужно выбрать miniVNA. Работа с этими программами практически аналогична. Для vna/J на страничке «Manuals» сайта DL2SBA есть подробные инструкции по установке ПО, калибровке анализатора, а также руководство пользователя.

Если эта конструкция Вас заинтересовала, можете ознакомиться с полным описанием, скачать чертеж печатной платы измерительного блока в формате Sprint Layout, его схему в формате sPplan, а также подробную методику изготовления направленного ответвителя «Tandem match», прошивку и проект программы для Arduino Uno. Для удобства я выкладываю все упомянутые выше статьи из журналов, а также программы Ig_MiniVNA и XLoader.

Внимание! При изготовлении печатной платы следует учитывать, что использованное в схеме реле чувствительно к полярности подключения обмотки. Если на обмотку подать напряжение обратной полярности, реле не сработает. Это может привести к погрешности при калибровке прибора. Поэтому перед изготовлением печатной платы следует уточнить по datasheet, куда нужно подавать плюс, а куда минус. Можно просто подать на обмотку 5 вольт и убедиться, что контакты перекидываются. Если полярность использованного вами реле не соответствует печатной плате, следует подкорректировать рисунок дорожек. Если плата уже изготовлена, придется резать дорожки - менять местами подключение выводов обмотки. Убедиться, что реле срабатывает в уже собранном анализаторе можно, если отключить провод «Rele» от Arduino и подключить его к +5 В.

© 2014-2018г.

Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328 Схема arduino atmega328

Тоже читают:



Как правильно сделать каркас для дымохода

Ажурные схемы вязания спицами безрукавок

Как сделать возврат основного средства

Структура дефекта по выготскому схема

Как своими руками сделать зарядное устройство для автомобиля